Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider a distributed server system consisting of a large number of servers, each with limited capacity on multiple resources (CPU, memory, etc.). Jobs with different rewards arrive over time and require certain amounts of resources for the duration of their service. When a job arrives, the system must decide whether to admit it or reject it, and if admitted, in which server to schedule it. The objective is to maximize the expected total reward received by the system. This problem is motivated by control of cloud computing clusters, in which jobs are requests for virtual machines (VMs) or containers that reserve resources for various services, and rewards represent service priority of requests or price paid per time unit of service. We study this problem in an asymptotic regime where the number of servers and jobs’ arrival rates scale by a factor L, as L becomes large. We propose a resource reservation policy that asymptotically achieves at least 1/2, and under certain monotone property on jobs’ rewards and resources, at least [Formula: see text] of the optimal expected reward. The policy automatically scales the number of VM slots for each job type as the demand changes and decides in which servers the slots should be created in advance, without the knowledge of traffic rates.more » « less
-
We study the problem of scheduling VMs (Virtual Machines) in a distributed server platform, motivated by cloud computing applications. The VMs arrive dynamically over time to the system, and require a certain amount of resources (e.g. memory, CPU, etc) for the duration of their service. To avoid costly preemptions, we consider non-preemptive scheduling: Each VM has to be assigned to a server which has enough residual capacity to accommodate it, and once a VM is assigned to a server, its service cannot be disrupted (preempted). Prior approaches to this problem either have high complexity, require synchronization among the servers, or yield queue sizes/delays which are excessively large. We propose a non-preemptive scheduling algorithm that resolves these issues. In general, given an approximation algorithm to Knapsack with approximation ratio r , our scheduling algorithm can provide rβ fraction of the throughput region for β < r. In the special case of a greedy approximation algorithm to Knapsack, we further show that this condition can be relaxed to β<1. The parameters β and r can be tuned to provide a tradeoff between achievable throughput, delay, and computational complexity of the scheduling algorithm. Finally extensive simulation results using both synthetic and real traffic traces are presented to verify the performance of our algorithm.more » « less
An official website of the United States government

Full Text Available